New Military Technology, International Security and Preventive Arms Control

Jürgen Altmann

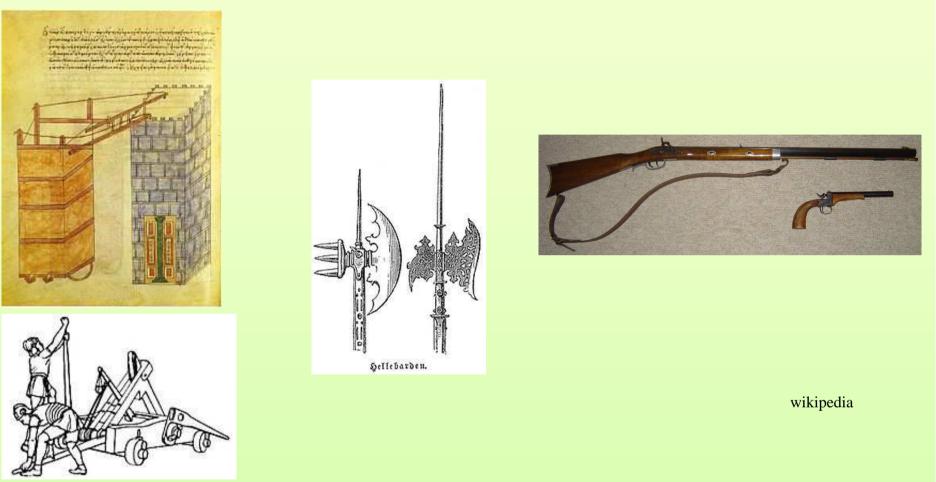
Experimentelle Physik III Technische Universität Dortmund

Dortmund, Germany

30th ISODARCO Winter Course

Andalo, Italy

8-15 January 2017


Projects on military applications of nanotechnology and on armed uninhabited vehicles funded by German Foundation for Peace Research DSF

Overview

- 1. New Technology, Armament and War
- 2. International System: Security Dilemma and Arms Control
- **3. Regulation of Dangerous Technologies Civilian vs. Military**
- 4. Preventive Arms Control
- 5. Long-Term Outlook: Technological Revolutions Underway
- 6. Conclusion

Global, mid- and long-term view, not limited to present asymmetric scenarios

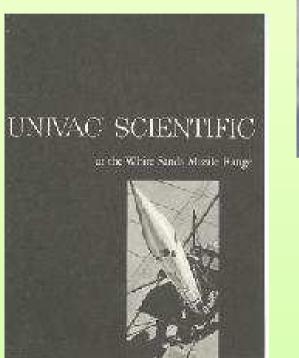
1. New Technology, Armament and War

Throughout history: Respective technical innovation also used for weapons and warfare

Technical edge of one side: in many cases military advantages, up to victory

- but not guaranteed

wikipedia

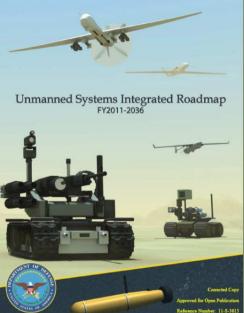

Since Second World War science used for war systematically, at very high effort

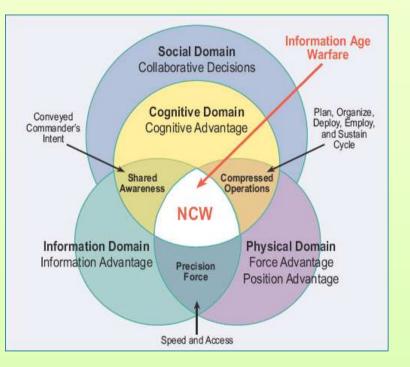
Hiroshima bomb

In Cold War strategic arms race, central role of new technology

Computer History Museum

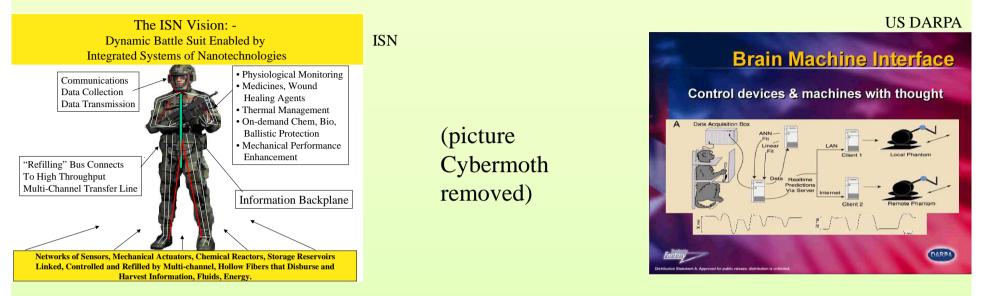
wikipedia





US Air Force

After Cold War: technological arms race and military R&D continue



US Department of Defense

Present Military Research and Development (R&D) – USA, setting precedents

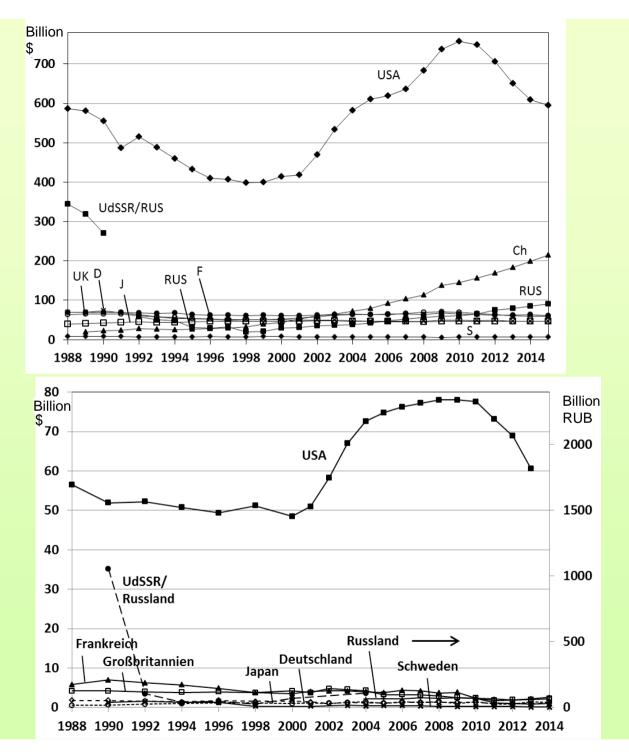
US Defense Advanced Research Projects Agency (DARPA) – Examples of projects

Quantitative Models of the Brain, Precise Robust Inertial Guidance for Munitions, Understanding Machine Intelligence, In vivo Nanoplatforms, Technology for Enriching and Augmenting Manned - Unmanned Systems, Tactical Undersea Network Architecture

Plus R&D programmes of the services Army, Navy, Air Force – Examples

Microscopic/Nanostructural Materials, Offensive Information Operations Technologies, Swarming Weapons Technologies, Directed Energy, Electromagnetic Guns, Highly Integrated Photonics, Space Access and Strike Applications, Nuclear Planning and Execution System

Basic Goal of US Military R&D: Superiority


Superior technology has been, and continues to be, a cornerstone of the U.S. military's strategic posture. This was true during the Cold War, when technology provided superior conventional weapons for U.S. and allied forces. The same is true in today's Information Age which involves significant activity in the cyber domain, and by non-state actors. The DoD R&E program needs to create, demonstrate, apply, and partner in the transition to operational use of technologies to enable affordable and decisive military superiority to defeat any adversary on any battlefield. Just as the past superior technologies have enabled an operational advantage for U.S. forces, continued technology development should enable future military superiority.

(2007 Department of Defense Research & Engineering Strategic Plan)

Today I'm announcing a new Defense Innovation Initiative – an initiative that we expect to develop into a game-changing third 'offset' strategy. This new initiative is an ambitious department-wide effort to identify and invest in innovative ways to sustain and advance America's military dominance for the 21st century.

(US Secretary of Defense, Nov. 2014)

Sustainable over the long run? Potential adversaries acquiring similar technology – increased threat to USA?

Total military expenditure

Military R&D expenditure

USA about 2/3 of global

Altmann 2017

International-Security Consequences of Technological Arms Race

Improved capabilities for attack, including surprise attack

Often reduced reaction times

Nuclear weapons: bombers (hours) -> ballistic missiles (10-35 minutes) multiple independently targetable reentry vehicles

Anti-satellite/space weapons

Autonomous weapon systems

Swarms of uninhabited armed vehicles

Cyber weapons

 \Rightarrow Increased pressure to act/react fast, increased fear

⇒ Increased possibilities of war by accident, by miscalculation, by mutual interaction between two automated/autonomous systems of sensing and acting

Destabilisation

Plus

Potential dangers to international humanitarian law

Potential dangers to arms control

Summarising: Often military innovation brings dangers to international security, peace ⇒ Limitations advisable

2. International System: Security Dilemma and Arms Control

International system: anarchy – no overarching authority guarantees security No monopoly of legitimate violence

Each state attempts to achieve security by threat of armed forces

- in this process increases threat to others
- overall result: security of all decreases

Preparations for war can make war more probable

One way out:

voluntary mutual limitation of armed forces (arms control)

- but friction with goal of victory should war nevertheless break out

Arms Control

Mutually agreed limitations on armament, armed forces

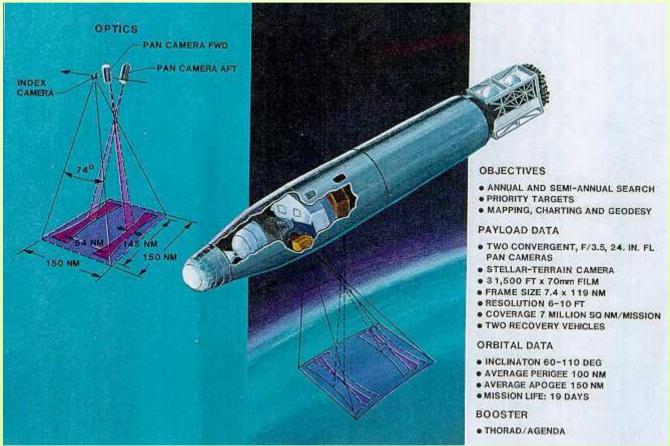
Often with reference to ,,general and complete disarmament under strict and effective international control"

Selected Treaties:

Treaty, Year of Signature	
Partial Nuclear Test Ban Treaty (PTBT) 1963	
Strategic Arms Limitations Talks (SALT I) (1972)	
Antiballistic Missile (ABM) Treaty 1972 (-2002)	
Biological Weapons Convention (BWC) 1972	
Intermediate Range Nuclear Forces (INF) Treaty 1987	
Treaty on Conventional Armed Forces in Europt (CFE) 1990	
Strategic Arms Reduction Treaty (START I) 1991	
Chemical Weapons Convention (CWC) 1993	
Comprehensive Nuclear Test Ban Treaty (CTBT) 1996	
New START 2010	

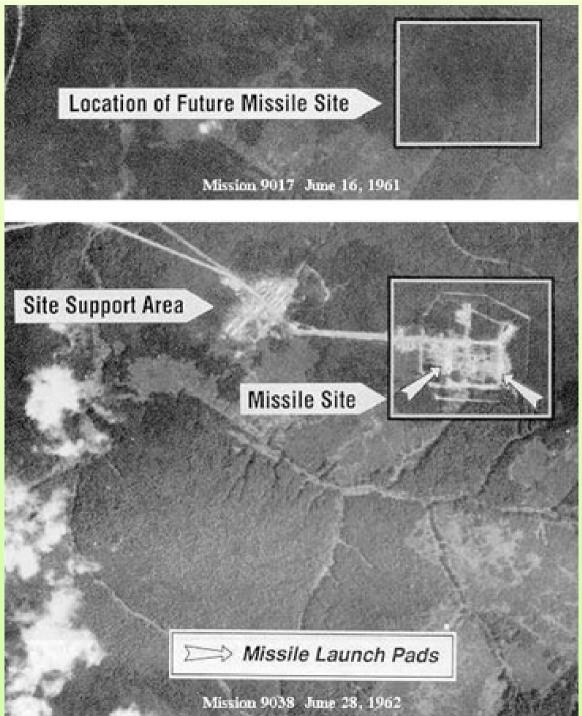
Verification: Required, but Problematic

Agreed arms control: if no reliable verification


- \Rightarrow suspicion of circumvention by others
- \Rightarrow motive for one's own circumvention
- ⇒ reliable ("adequate") verification needed, transparency

Conflict with military secrecy, in part required for very task of armed forces (victory in armed conflict): Fear of revealing technical properties, weak points, structures, plans, motivation, ... - could be used for (surprise) attacks

Verification dilemma


Way out: creative mix of limited transparency and procedures

Traditional arms control (nuclear-weapon carriers, nuclear explosions etc.): large objects/events, often detectable from outside by "national technical means of verification" (mostly satellites)

wikipedia

KH-4B Corona from 1962

Two U.S. Corona reconnaissance satellite images made a year apart in mid-1961 (top) and mid-1962 (bottom)—revealing the construction of a new Soviet SS-7 Saddler (R-16) intercontinental ballistic missile site. Located at Yur'ya, Russia, the site was the first Soviet ICBM complex to be identified in Corona images.

National Reconaissance Office

Military shipyard in Nikolayev, Ukraine Intelligence-service photo of 1984 Building of the aircraft carrier Kusnetsov

Limits on smaller systems: more intrusive verification needed on-site inspections, in barracks, laboratories, firms; sample taking and analysis, ...

1987 *Intermediate Range Nuclear Force* (INF) *Treaty*:

Data exchange; on-site inspections, even permanent presence at missile productions plants, various types of equipment

vpmf.net

1990 Conventional Armed Forces in Europe (CFE) Treaty:

Annual data exchange; on-site inspections with some equipment at selected sites, short-term notice which ones

1991 Strategic Arms Reduction Treaty (START I):

Data exchange; on-site inspections with permanent presence at missile production plants, long lists of equipment for inspections, perimeter, portals

1993 Chemical Weapons Convention:

Organization for the Prohibition of Chemical Weapons (The Hague, NL)

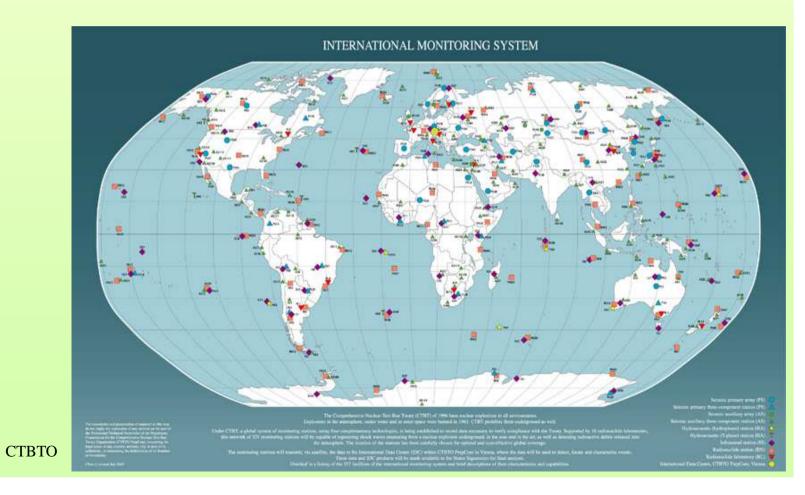
Verification Annex included

Declarations, on-site inspections: destruction, storage sites, chemical industry; sample taking and analysis

OPCW

1972 Biological Weapons Convention:

No verification mechanism – not deemed necessary 1972 because of risk of infecting one's own troops and population


Efforts for a compliance and verification protocol failed 2001

1996 Comprehensive Test Ban Treaty (CTBT):

CTBT Organization (Vienna, AU)

International Monitoring System worldwide (seismological, radionuclide, hydroacoustic, infrasound); data to International Data Centre (Vienna)

On-site inspections to area of event (after entry into force), various sensor types and other equipment

3. Regulation of Dangerous Technologies – Civilian vs. Military

- Civilian, within (Democratic) States

Accidents and misuse prevented / minimised by laws, other regulation

Monopoly of legitimate violence rests with state, state has power and means/personnel to enforce compliance with the law

Perpetrators are being prosecuted, put to jail etc.

Far-reaching inspection rights of state as routine procedures, at (urgent) suspicion of violation: workplace protection, environmental protection, accounting, exports, ...

Broadly accepted – safety and security of citizens and society require rules, checking of compliance and criminal prosecution

- Civilian, in the International System

By standards, conventions

(Most) states co-operate, guarantee compliance by entities in their jurisdiction

Some problems from economic competition

Military Use of New Technologies: Categorically Different

Potential for selective or massive destruction: make usable as fast as possible Research of new possibilities, if suitable, develop military systems

- protected and ordered by the state, with its resources and much personnel

Justified by highest national interests

Task of armed forces: in armed conflict prevail by selective or massive destruction

Central means of prevailing: new technology

Task of armed forces \Rightarrow tendency towards transcending civil boundaries, secrecy

Military uses: not often looked at in technology assessment

- special conditions
- intertwined with international security, in particular security dilemma

Regulation of Dangerous Military Uses of (New) Technology

No international parliament can decide rules, no overarching authority can enforce compliance

Regulation possible by preventive arms control

Needs international agreement, voluntary participation

4. Preventive Arms Control

What is Preventive Arms Control?

Linear model of "life cycle" of a weapon technology/system:

Research

Development

Testing	
Acquisition	
Use	
	Modernisation
	Taking out of service

Preventive arms control:

Ban, limitation of military usable technology or weapons systems *before* acquisition

Altmann 2005, 2006

Steps of Preventive Arms Control

- 1. Prospective scientific-technical analysis of technology properties weapon, propagation, effect
- 2. Prospective analysis of military and operational aspects probable use, which targets unusual employment forms, collateral effects
- 3. Assessment under criteria of preventive arms control
- 4. Devising possible limits and verification methods stage (research, development, testing) ponder positive/legitimate uses verification: methods, procedures confidence-building measures

 \rightarrow ideal case: international negotiations, Treaty/Protocol

Criteria of Preventive Arms Control

- I. Adherence to and further development of effective arms control, disarmament, and international law
 - prevent dangers to existing or intended arms control and disarmament treaties
 - observe existing norms of humanitarian law
 - no utility for weapons of mass destruction
- II. Maintain and improve stability
 - prevent destabilisation of the military situation
 - prevent arms race
 - prevent horizontal or vertical proliferation/diffusion of military-relevant technologies, substances or knowledge
- **III.** Protect humans, environment, and society

prevent dangers to humans, environment, and sustainable development prevent dangers to the development of societal and political systems prevent dangers to the societal infrastructure

Precedents

Partial Test Ban 1963 → Comprehensive Test Ban 1996 Non-Proliferation Treaty 1968 ABM Treaty 1972-2002 Biological Weapons Convention 1972 Chemical Weapons Convention 1993 Blinding Laser Weapons Protocol 1995

Usually focus on weapons, not on technology as such Most: prohibition already of development and testing

Excursion 1: Use of New Technology by Terrorists can be Limited by Agreements Among States

Sophisticated systems can only be developed by states would be available later also for less capable weapon producers would proliferate via white, grey and black markets would be available for terrorist attacks, too

Terrorists and other criminals are limited in what they can develop:

- Limited funds
- Limited number of scientists/engineers
- Limited opportunities/areas for testing
- Under pressure of prosecution

Terrorists cannot be parties to limitation agreements

But limitation among states would go a long way in preventing access by terrorists to sophisticated military systems

Excursion 2: Export Control Is No Alternative to Preventive Arms Control

Export-control regimes are not global

Member states want to use new military technology themselves while blocking or impeding access by others (exception: Australia Group referring to the BWC)

Excursion 3: Concept of Compliance and Verification of a Ban on Autonomous Weapon Systems (AWS)

While remotely controlled uninhabited weapons remain allowed

Autonomy cannot be seen from the outside

Inspections of on-board software much too intrusive, and autonomy programs could be downloaded while flying

receipt.

 \Rightarrow Forensic investigation after the fact

Record all sensor, communication and control data reliably, make available on demand for later investigation by Treatycompliance organisation

Black boxes and glass boxes with hash codes for authentication

· May have independent capability to detect and record weapons fire events.

Gubrud 2014

Urgent Topics for Preventive Arms Control

Space Weapons

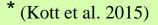
Hypervelocity Missiles

Directed Energy Weapons

Autonomous Weapon Systems

Very Small Weapon Systems

New Biochemical/Nanotechnological Weapons – mainly by adding compliance/ verification protocol to BWC


Cyber Weapons

3-D Printers?

New Tools for Genetic Manipulation/Synthetic Biology?

Implants, Other Body Manipulation, Superhuman Soldiers*

For some issues proposals exist, just the political will is missing Others require (additional) research

5. Long-Term Outlook: Technological Revolutions Underway

Information and communication technology

3-D printing

Biotechnology, genetic engineering, proteomics, ...

Robotics, artificial intelligence

Cognitive science, neuroscience/-technology

Nanotechnology

- Converging technologies

All dual use – civilian and military

Civilian research opens new possibilities for nefarious uses

Many technologies wide-spread, cheap

Several allow production using software, possibly downloaded from the Internet, in small, inconspicuous facilities

Altmann 2006

Verification is getting more difficult

while requirements for verification increase

International limits on military uses of revolutionary technologies will need very intrusive verification: anytime, anywhere, in nearly all countries

Will armed forces and states accept such intrusive verification? If not, arms control at its end, new way of providing international security needed

8. Conclusion

Military R&D continue at high pace, civilian research opens new possibilities USA main driver

Urgent dangers from new military technologies

Preventive arms control needed to contain them

Creativity needed to develop concepts for limitation and verification

Given political will, arms control with traditional methods of verification can work for the next 2 decades

Main task: change strive for superiority in USA

Research needed: military R&D in relevant countries, options for preventive limitation and their verification, political conditions for their acceptance

In the long run, revolutionary technologies with wide-spread, easy access: very intrusive verification needed – reconcilable with military need for secrecy?

Long-term solution for maintaining international security?

Further Reading

J. Altmann, Nanotechnology and Preventive Arms Control, DSF Forschung no. 3, Osnabrück: DSF, 2005, http://www.bundesstiftung-friedensforschung.de/images/pdf/forschung/berichtaltmann.pdf

J. Altmann, Military Nanotechnology: Potential Applications and Preventive Arms Control, London etc.: Routledge, 2006 (Russian version: Moscow: Tekhnosphera, 2006)

J. Altmann, Arms Control for Armed Uninhabited Vehicles – an Ethical Issue, Ethics and Information Technology, **15** (2), 137-152, 2013, <u>http://link.springer.com/article/10.1007%2Fs10676-013-9314-5</u> J. Altmann, U. Bernhardt, K. Nixdorff, I. Ruhmann, D. Wöhrle, Naturwissenschaft – Rüstung – Frieden – Basiswissen für die Friedensforschung, 2. verbesserte Auflage, (Science – Armament – Peace – Basic Knowledge for Peace Research, 2nd improved edition), Berlin etc.: Springer VS, 2017 (Ch. 6)

Additional References

M. Gubrud, Presentation to UN on autonomous weapons, New York, NYC, 6 March 2014, http://gubrud.net/wp-content/uploads/2014/04/UN-ABDM.0.pdf

A. Kott et al., Visualizing the Tactical Ground Battlefield in the Year 2050: Workshop Report, Adelphi MD: US Army Research Laboratory, 2015, <u>http://www.arl.army.mil/arlreports/2015/ARL-SR-0327.pdf</u>

Secretary of Defense Speech, Reagan National Defense Forum Keynote, As Delivered by Secretary of Defense Chuck Hagel, Ronald Reagan Presidential Library, Simi Valley, CA, Nov. 15, 2014, <u>http://www.defense.gov/News/Speeches/Speech-View/Article/606635</u>

US DoD (Department of Defense), 2007 Department of Defense Research & Engineering Strategic Plan, June 2007, http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=

GetTRDoc.pdf&AD=ADA472100